

STRUCTURAL PRODUCTS

PROForms® and PROPlate®

STRUCTURAL PRODUCT LINES

PROForms® Structural Components

Our standard structural inventory includes angles, beams, deck board, building panels, columns, tubes, rods and more. See page 12 for a complete listing.

PROPlate® Flat Sheet

Typically used for gusset plates, splice plates and base plates, as well as round and square washers, our flat sheet offers the same durability as our other FRP products.

Custom Profiles

Need a special profile? We can manufacture custom pultrusions to your specifications. Contact us for a complete FRP solution including structural shapes, decking, handrail, ladders and cages and fabricated structures such as stairways and platforms.

APPLICATIONS

Stair Structures
Walkways
Pedestrian Bridges
Structural Framing
Handrail Systems
Caged and Fixed Ladders
Decking
Boat Docks
Pipe Supports
Cross Bracing
Concrete Embedment

Tank and Hatch Covers

Display Racks

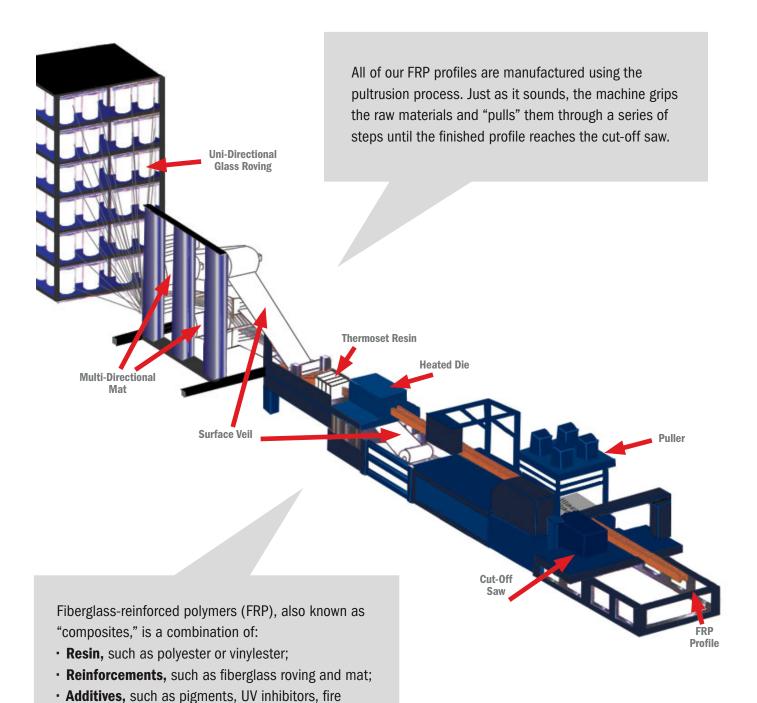
MARKETS

Architectural Solutions
Agriculture
Cooling Towers
Military
Mining
Oil and Gas
Pedestrian Bridges
Plant and Chemical Processing
Pulp and Paper
Theme and Water Parks
Utilities

Wastewater/Water Treatment

THE SMART ALTERNATIVE TO WOOD, STEEL AND ALUMINUM

Fiberglass reinforced polymer (FRP) is one of the strongest, most durable building materials available today. It's nonconductive, dimensionally stable and extremely low maintenance. It offers the strength of steel at a fraction of the weight for efficient transportation and installation. And unlike traditional materials like wood, steel and aluminum, FRP won't rust, corrode, warp, rot, decay or attract insect damage — so it's ideal for harsh environments.


In short, it's a different way to solve your design challenges — one that can reduce costs and improve long-term performance. To maximize these benefits, however, it's best to design with the properties of FRP in mind from the start. Our engineers and fabricators can help, so contact us with your questions.

Features and Benefits

- **Corrosion resistant.** Won't rot, rust or corrode.
- **Strong yet lightweight.** Helps save on transportation.
- Virtually maintenance-free. Durable and weather-resistant for a longer life cycle.
- Fire-retardant and nonconductive. Helps create a safer environment.
- **Dimensionally stable.** Won't shrink, swell, warp or bow.
- **Highly consistent.** Strength, appearance and quality are the same from piece to piece.
- Easy to fabricate and install. FRP can be cut, drilled and assembled with standard tools.
- **Non-leaching.** Does not require environmentally hazardous preservatives.
- **Fast turnaround.** Most in-stock orders are shipped within the next business day.
- Backed by a 25-Year Limited Warranty*
- Made in U.S.A.

The Pultrusion Process: Step by Step

retardant, etc.; and

UV protection and appearance

• Surface veil, which enhances corrosion resistance,

Reinforcement

The process typically starts by pulling in two forms of fiberglass reinforcement. Creels of fiberglass roving provide unidirectional strength along the length of the profile, and rolls of woven fiberglass mat provide multidirectional reinforcement. All reinforcements are fed through pre-forming guides that will begin to shape the raw glass fibers into the finished profile. Resin (added in step 2) provides an additional form of reinforcement.

Wet-Out

The fiberglass reinforcements are pulled through a bath of thermoset resin — typically polyester or vinylester — as well as pigments to add color, filler to enhance properties, and a catalyst to aid in curing.

Surface Veil

Just before all the material is pulled into the heated die, surface veil is added to enhance the surface appearance of the final product.

Curing

Wet-out reinforcements are pulled through the heated pultrusion die, which begins the thermosetting process that causes the resin to "cure" or harden. By the time the part exits the die, a solid, rigid profile in the exact shape of the die cavity has been formed with all the reinforcements laminated inside.

The finished product is then pulled to the cut-off saw and cut to the desired length. After cutting, it is placed in stock at one of our warehouses, sent to our state-of-theart fabrication center for secondary processing, or crated for shipment to the customer.

Standard Resin Systems

PROForms* and PROPlate* products are offered in three resin series to meet the requirements of different applications and environments.

STD — STANDARD NON FIRE RETARDANT POLYESTER

A general-purpose isophthalic polyester resin system with a UV inhibitor, offering good corrosion resistance. Color: Olive Green

FR — FIRE RETARDANT POLYESTER

A general-purpose fire-retardant isophthalic resin system with a UV inhibitor, offering good corrosion resistance. Colors: Dark Gray and Yellow

VE — VINYLESTER FIRE RETARDANT

A premium vinylester resin system with a UV inhibitor. It's fire retardant and highly corrosion resistant. Colors: Beige and Yellow

FRP vs. Traditional Materials

Traditional building materials have their place. But for harsh, corrosive environments, FRP is a smart choice. Here's how FRP compares to several traditional options.

	FRP Composites Pultruded GFRP	Steel A 709 Grade 50	Aluminum 6061-7651 & 6061-76	Wood Douglas Fir
CORROSION, ROT AND INSECT RESISTANCE	Resists a broad range of chemicals and is unaffected by moisture or immersion in water. Resists insect damage. Painting is only suggested when exposed to UV rays/direct sunlight.	Subject to oxidation and corrosion. Requires painting or galvanizing for many applications.	Can cause galvanic corrosion. (Anodizing and other coatings increase corrosion resistance.)	Can warp, rot and decay when exposed to moisture, water and chemicals. Susceptible to attack by insects such as termites and marine borers.
STRENGTH	Has greater flexural strength than timber and pound-for-pound is often stronger than steel and aluminum in the lengthwise direction. Ultimate flexural strength (Fu): LW = 30,000 psi (30 ksi) CW = 10,000 psi (10 ksi) Compression strength: LW = 30,000 psi (30 ksi) CW = 15,000 psi (10 ksi)	Homogeneous material. Yield strength (Fy) = 36 ksi	Homogeneous material. Flexural strength (Fu) = 35 ksi	Modulus of rupture is 12,000 psi
WEIGHT	Weighs 75% less than steel and 30% less than aluminum.	Could require lifting equipment to move and place. 1/2-in. thick plate = 20.4 lbs/sq ft	Lightweight — about a third of the weight of copper or steel.	Specific gravity 0.48
ELECTRICAL CONDUCTIVITY	Nonconductive. High dielectric capability.	Conducts electricity. Grounding potential.	Conducts electricity. Grounding potential.	Can be conductive when wet.
THERMAL PROPERTIES	Good insulator with low thermal conductivity. Thermal conductivity = 4 (BTU in. /(hr ft² °F) Low thermal coefficient of expansion. = 7 - 8 (in./in./°F) 10-6	Conducts heat. Thermal conductivity = 260-460 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. = 6 - 8 (in./in./°F) 10 ⁻⁶	Conducts heat. Thermal conductivity = 150 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. = 13 (in./in./°F) 10-6	Low thermal conductivity. Thermal conductivity = .8 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. = 1.7 - 2.5 (in./in./°F) 10 ⁻⁶

	FRP Composites Pultruded GFRP	Steel A 709 Grade 50	Aluminum 6061-7651 & 6061-76	Wood Douglas Fir
STIFFNESS	Up to 3.3 times as rigid as timber. Will not permanently deform under working load. Modulus of elasticity: 2.8 x 10 ⁶ psi	Modulus of elasticity: 29 x 10 ⁶ psi	Modulus of elasticity: 10 x 10 ⁶ psi	Modulus of elasticity: up to 1.6-1.8 x 10 ⁶ psi*
IMPACT RESISTANCE	Will not permanently deform under impact. Glass mat in pultruded parts distributes impact load to prevent surface damage, even in subzero temperatures.	Can permanently deform under impact.	Easily deforms under impact.	Can permanently deform or break under impact.
ENVIRONMENTAL IMPACT	Not hazardous to the environment.	Not hazardous.	Not hazardous.	May be treated with hazardous preservatives or coatings to increase corrosion/rot/insect resistance. Contributes to depletion of forest systems.
COLOR	Color is molded through; no painting required. Variety of colors available.	Must be painted for color, and may require repainting over time.	Colors require prefinishes, anodic coatings and paints. Mechanical, chemical and electroplated finishes can be applied.	Must be primed and painted for color, and may require repainting over time.
COST	Lower installation costs, less maintenance and longer product life allow for a lower lifecycle cost.	Lower initial material cost.	Part price comparable to FRP.	Has a lower initial cost, but usually requires more maintenance and replacement.
EMI/RFI TRANSPARENCY	Transparent to radio waves and EMI/RFI transmissions. Used for radar and antennae enclosures and supports.	Can interfere with EMI/RFI transmissions.	Highly reflective to EMI/RFI transmissions.	Transparent.
FABRICATION	Can be field-fabricated using simple carpenter's tools with carbon or diamond tip blades — no torches or welding required. Light weight allows easier transport and installation.	Often requires welding and cutting torches. Heavier material requires special equipment to erect and install.	Good machinability (welding, brazing, soldering or mechanical joining).	Can be field-fabricated using simple carpenter's tools.

^{*12%} moisture content

Compare the Numbers ...

Property	FRP Composites Pultruded GFRP		Steel A 709 Grade 50	Aluminum 6061-7651 & 6061-76	Wood Douglas Fir
Density (lb/ft³)	107	-120	490	169	30
Tensile Strength (psi)	30,000 (LW)	7,000 (CW)	65,000	45,000	_
Tensile Modulus (x 10 ⁶ psi)	2.8 (LW)	1 (CW)	30	10	_
Flexural Strength (psi)	30,000 (LW)	10,000 (CW)	65,000	45,000	12,000
Flexural Modulus (x 10 ⁶ psi)	1.8 (LW)	0.8 (CW)	30	10	1.6 - 1.8
Thermal Conductivity (BTU in. /(hr ft² °F))	4		323	1,160	0.8
Thermal Expansion (x 10 ⁻⁶ in./in./°F)	7 to 8		6 to 8	13	1.7 to 2.5

LW = Lengthwise / CW = Crosswise

References:

- 1. Datasheets from www.matweb.com
- 2. Wood Handbook: Wood as an Engineering Material

Typical Coupon Properties

The following table shows test results for typical coupon properties of PROForms® and PROPlate® structural fiberglass profiles (Standard, Fire Retardant and Vinylester shapes). Properties are derived per the ASTM test method shown. Synthetic surfacing veil and ultraviolet inhibitors are standard.

	ASTM		POLY-	VINYL-	POL	YESTER P	LATE	VINYLESTER PLATE			
	TEST METHOD	UNITS	ESTER SHAPES	ESTER SHAPES	ROD & BAR	1/8"	3/16"- 1/4"	3/8"- 1"	1/8"	3/16"- 1/4"	3/8"- 1"
MECHANICAL PROPERTIES	S (minimum ulti	mate)									
Tanaila Ctraca IW	D-638	psi	30,000	30,000	100,000	20,000	20,000	20,000	20,000	20,000	20,000
Tensile Stress, LW	D-036	N/mm ²	206.8	206.8	689	137.9	137.9	137.9	137.9	137.9	137.9
Tensile Stress, CW	D-638	psi	7,000	7,000		7,500	10,000	10,000	7,500	10,000	10,000
Tensile Suess, GW	D-036	N/mm ²	48.2	48.2		51.7	68.9	68.9	51.7	68.9	68.9
Tensile Modulus, LW	D-638	10 ⁶ psi	2.5	2.6	6.0	1.8	1.8	1.8	1.8	1.8	1.8
Tensile Modulus, EW	D-030	KN/mm ²	17.2	17.9	41.3	12.4	12.4	12.4	12.4	12.4	12.4
Tensile Modulus, CW	D-638	10 ⁶ psi	0.8	0.8		0.7	0.9	1.4	1.0	1.0	1.4
Tensile Modulus, GW	D-030	KN/mm ²	5.5	5.5		4.8	6.2	9.6	6.9	6.9	9.6
Compressive Stress, LW	D-695	psi	30,000	30,000	60,000	24,000	24,000	24,000	24,000	24,000	24,000
Compressive Suess, Lw	D-033	N/mm ²	206.8	206.8	413.6	165.4	165.4	165.4	165.4	165.4	165.4
Compressive Stress, CW	D-695	psi	15,000	16,000		15,500	16,500	20,000	16,500	17,500	20,000
Compressive Suess, GW	D-033	N/mm²	103.4	110.3		106.8	113.7	137.9	113.79	120.6	137.9
Compressive Modulus, LW	D-695	10 ⁶ psi	2.5	2.6		1.8	1.8	1.8	1.8	1.8	1.8
Compressive wodulus, Ew	D-033	KN/mm ²	17.2	17.9		12.4	12.4	12.4	12.4	12.4	12.4
Compressive Modulus,	D-695	10 ⁶ psi	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
CW	D-093	KN/mm ²	6.9	6.9		6.9	6.9	6.9	6.9	6.9	6.9
E. 10. 111	D-790	psi	30,000	30,000	100,000	35,000	35,000	30,000	35,000	35,000	30,000
Flexural Stress, LW	D-190	N/mm ²	206.8	206.8	689	241.3	241.3	206.8	241.3	241.3	206.8
Florural Ctroop CW	D-790	psi	10,000	10,000		13,000	15,000	18,000	13,000	15,000	18,000
Flexural Stress, CW		N/mm²	68.9	68.9		89.6	103.4	124.1	89.6	103.4	124.1
Floured Madulus 1W	D 700	10 ⁶ psi	1.8	2.2	6.0	1.8	2.0	2.0	1.8	2.0	2.0
Flexural Modulus, LW	D-790	KN/mm ²	11.0	11.0	41.9	12.4	13.8	13.8	12.4	13.8	13.8
Flowered Madulus CW	D 700	10 ⁶ psi	0.8	0.8		0.9	1.1	1.4	1.0	1.1	1.4
Flexural Modulus, CW	D-790	KN/mm ²	5.5	5.5		6.2	7.6	9.6	6.2	7.6	9.6
Madulus of Floaticity F	Full	10 ⁶ psi	2.6	2.8							
Modulus of Elasticity, E	Section	KN/mm ²	17.9	19.3							
Modulus of Elasticity, E	Full	10 ⁶ psi	2.5	2.5							
(W & I Shapes > 4")	Section	KN/mm ²	17.2	17.2							
Shear Modulus, LW	Full	10 ⁶ psi	0.425	0.425							
Sileal Modulus, LW	Section	KN/mm ²	2.9	2.9							
Chart Dagra Chaga IW	D 2244	psi	4,500	4,500	8,000						
Short Beam Shear, LW	D-2344	N/mm²	31.0	31.0	55.2						
Ultimate Bearing Stress,	D 050	psi	30,000	30,000		32,000	32,000	32,000	32,000	32,000	32,000
LW & CW	D-953	N/mm²	206.8	206.8		220.6	220.6	220.6	220.6	220.6	220.6
Deigopa's Deti- 1W	D 2020	in./in.	0.33	0.33		0.31	0.31	0.31	0.31	0.31	0.31
Poisson's Ratio, LW	D-3039	mm/mm	0.33	0.33		0.31	0.31	0.31	0.31	0.31	0.31
Notebad Irod Irra at 114	D 050	ftlbs./in.	25	25	40	18.5	20	20	18.5	20	20
Notched Izod Impact, LW	D-256	J/mm	1.28	1.28	2.04	0.94	1.02	1.02	0.94	1.02	1.02
Mataland Incid Control City	D 050	ftlbs./in.	4	4		5	5	5	5	5	5
Notched Izod Impact, CW	D-256	J/mm	0.2	0.2		0.26	0.26	0.26	0.26	0.26	0.26

	ASTM		POLY-	VINYL-		POL	YESTER PI	.ATE	VIN	/LESTER P	LATE
	TEST METHOD	UNITS	ESTER SHAPES	ESTER SHAPES	ROD & BAR	1/8"	3/16"- 1/4"	3/8"- 1"	1/8"	3/16"- 1/4"	3/8"- 1"
PHYSICAL PROPERTIES											
Barcol Hardness	D-2583	_	45	45	50	40	40	40	40	40	40
24-Hour Water Absorption	D-570	% max., by wt.	0.60	0.60	0.25	0.60	0.60	0.60	0.60	0.60	0.60
Descritu	D-792	lbs./in. ³	.062070	.062070	.072076	0.60- 0.68	0.60- 0.68	0.60- 0.68	0.60- 0.68	0.60- 0.68	0.60- 0.68
Density	D-192	10 ⁻³ g/mm ³	1.72-1.94	1.72-1.94	1.99-2.10	1.66- 1.88	1.66- 1.88	1.66- 1.88	1.66- 1.88	1.66- 1.88	1.66- 1.88
Coefficient of Thermal	D 000	10 ⁻⁶ in./in./°F	7.0	7.0	5.0	8.0	8.0	8.0	8.0	8.0	8.0
Expansion (Typical), LW	D-696	10 ⁻⁶ mm/mm/°C	1.2	1.2	5.45	14.5	14.5	14.5	14.5	14.5	14.5
The arrest Open desertionity	0.177	BTU/sf/hr/°F/in.	4	4	4	4	4	4	4	4	4
Thermal Conductivity	C-177	W-m/m ² / °C	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
ELECTRICAL PROPERTIES	(based on polye	ster and vinylester resin	systems)								
Arc Resistance, LW	D-495	seconds	120								
Dielectric Strength, LW	D-149	kv/in.	35								
Dielectric Strength, PF	D-149	volts/mil.	200								
Dielectric Strength, PF	D-150	@60hz	5								
FLAMMABILITY PROPERTI	ES (based on fi	re retardant polyester an	d fire retardant	vinylester resin s	systems)						
Flammability Classification (1/8")	UL 94	VO									
Tunnel Test	E-84	25 max.									
NBS Smoke Chamber E-662	E-662	600-700									
Flammability	D-635	Self Extinguishing									

LW=Lengthwise CW=Crosswise PF=Perpendicular to Laminate Face

Typical Properties of Threaded Rod/Nuts

Our threaded rod and nuts are manufactured using premium vinylester resin containing UV inhibitors. The properties listed below are the result of the ASTM test method indicated.

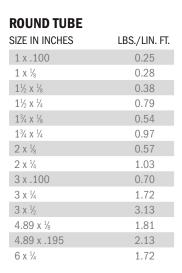
	ASTM TEST			Diameter -	VALUE - Threads per i	nch (UNC)	
PROPERTIES	METHOD	UNITS	3/8-16	1/2-13	5/8-11	3/4-10	1-8
Illtimata Transverse Cheer (Dauble Cheer)	B-565	lb.	4,200	6,800	10,000	13,400	24,000
Ultimate Transverse Shear (Double Shear)	D-303	N	18,683	30,248	44,482	59,606	106,757
Longitudinal Community Changeth	D 00F	psi	50,000	50,000	50,000	50,000	50,000
Longitudinal Compressive Strength	D-695	MPa	345	345	345	345	345
	D-790	psi	70,000	70,000	70,000	70,000	70,000
Florida Orional		MPa	483	483	483	483	483
Flexural Strength	D-790	psi x 10 ⁶	2.5	2.5	2.5	2.5	2.5
		GPa	17.2	17.2	17.2	17.2	17.2
Flammability	D-635			Self-extinguishing			
Fire Retardant	E-84			Class 1			
Water Absorption (24 Hour Immersion)	D-570	% max.	0.8	0.8	0.8	0.8	0.8
Langitudinal Coefficient of Thousand Funancian	D 606	10 ⁻⁶ in./in./°F	6	6	6	6	6
Longitudinal Coefficient of Thermal Expansion	D-696	10 ⁻⁶ mm/mm/°C	11	11	11	11	11

	ASTM TEST			Diameter -	VALUE - Threads per i	nch (UNC)	
PROPERTIES	METHOD	UNITS	3/8-16	1/2-13	5/8-11	3/4-10	1-8
Ultimate Thread Shear (Using Fiberglass Nut)		lb.	1,200	2,400	3,600	4,000	8,200
Oldinate fillead Silear (Oshig Fibergiass Nut)	_	N	5,338	10,676	16,014	17,793	36,475
Ultimate Torque Strength (Fiberglass Nut		ftlb.	8	16	35	50	110
Lubricated with SAE 10W30 Motor Oil)	_	N-m	11	22	47	68	149
D. IW. d.	_	lb./ft.	0.09	0.15	0.24	0.34	0.52
Rod Weight		g/m	40.82	68.03	108.86	154.22	235.86
Nut Waidht	_	lb.	0.02	0.03	0.04	0.07	0.13
Nut Weight		grams	9.07	13.60	18.14	31.75	58.96
Nut Dissensions (Hey Nut Height)		in.	0.75	0.875	1.25	1.5	1.75
Nut Dimensions (Hex Nut Height)	_	mm	19.1	22.2	31.8	38.1	44.5
Color				Gray			

PROForms® Availability

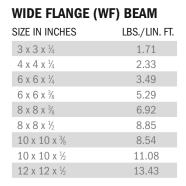
ANGLE SIZE IN INCHES	LBS./LIN. FT.
1 x 1 x ½	0.19
1½ x ½	0.23
1½ x 1½ x ¾ ₁₆	0.46
1½ x 1½ x 14	0.54
2 x 2 x 1/ ₄	0.75
3 x 3 x 1/4	1.16
3 x 3 x 3/8	1.62
3 x 3 x ½	2.09
4 x 4 x 1/4	1.50
4 x 4 x 3/8	2.21
4 x 4 x ½	2.92
6 x 6 x 3/8	3.35
6 x 6 x ½	4.55
6 x 4 x ½	3.63

CHANNEL	
SIZE IN INCHES	LBS./LIN. FT.
2 x ⁹ / ₁₆ x ¹ / ₈	0.28
3 x 1/8 x 1/4	0.80
3 x 1 x ½	0.85
3 x 1½ x ¾6	0.81
3 x 1½ x ¼	1.03
3½ x 1½ x ¾6	0.90
4 x 1½ x ¼	1.14
4 x 1% x 1/16	0.93
5 x 1% x ¼	1.37
5½ x 1½ x ¼	1.55
6 x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.69
6 x 1 ¹¹ / ₁₆ x ³ / ₈	2.41
8 x 2 ³ / ₁₆ x ¹ / ₄	2.31
8 x 2 ³ / ₁₆ x ³ / ₈	3.24
10 x 2¾ x ½	5.55
12 x 3 x ½	6.24
14 x 3½ x ¾	10.97
18 x 2½ x ¾	6.50



SQUARE TUBE SIZE IN INCHES LBS./LIN. FT. 1 x 1 x 1/8 0.34 11/4 x 11/4 x 1/4 0.74 1½ x 1½ x ⅓ 0.53 1½ x 1½ x ¼ 0.97 1¾ x 1¾ x ½ 0.58 1¾ x 1¾ x ¼ 1.09 2 x 2 x ½ 0.71 2 x 2 x 1/4 1.35 21/8 x 21/8 x 3/16 0.71 $2\frac{1}{4}$ x $2\frac{1}{4}$ x $\frac{1}{8}$ 0.86 21/4 x 21/4 x 1/4 1.67 $2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4}$ 1.76 3 x 3 x 1/8 1.09 3 x 3 x 1/4 2.11 3 x 3 x 3/8 2.99 $3\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{4}$ 2.60 4 x 4 x ½ 2.96 $4 \times 4 \times \frac{3}{8}$ 4.32 6 x 6 x ½ 4.35 $6 \times 6 \times \frac{3}{8}$ 6.54

SIZE IN INCHES	LBS./SQ. FT.
2½ x ¾16	0.37
3 x 1/4	0.57
3 x 3/8	0.93
3 x ½	1.06
4 x 1/8	0.39
4 x 1/4	0.76
4 x 3/8	1.15
4 x ½	1.53
6 x ½	1.24
6 x ½	2.25
9 x 1/ ₄	1.86
10 x 1/4	2.02
11 x ½	2.26
12 x 1/4	2.46
20 x 1/4	4.01
24 x 1/4	4.87
36 x ¹ / ₄	7.49
48 x ½	1.30
48 x 3/16	1.88
48 x 1/ ₄	2.49
48 x 3/8	3.51
48 x ½	4.87
48 x ⁵ / ₈	5.86
48 x ¾	6.72
48 x 1	8.65



I-BEAM	
SIZE IN INCHES	LBS./LIN. FT.
3 x 1½ x ¼	1.10
$3\frac{1}{2} \times 1\frac{1}{2} \times \frac{3}{16}$	0.97
4 x 2 x ½	1.56
$5\frac{1}{2}$ x 2 x $\frac{1}{2}$ x $\frac{1}{4}$	1.58
6 x 3 x ½	2.34
6 x 3 x ¾	3.65
8 x 4 x 3/ ₈	4.42
8 x 4 x ½	5.70
10 x 5 x 3/8	5.67
10 x 5 x ½	7.39
12 x 6 x ½	8.91
18 x 4½ x 12	8.51
24 x 7½ x ¾	15.49

RECTANGULAR TUBE					
SIZE IN INCHES	LBS./LIN. FT.				
4 x 1 x 1/8	0.92				
$4\% \times 1\% \times 1\%$	1.16				
4 x 1½ x 2 x ¼	2.21				
4 x 2 x 1/4	2.21				
5 x 2 x ½	1.21				
5½ x 3½ x ¼	3.09				
6 x 4 x ½	3.77				
6½ x 2 x ½	3.56				

ROUND ROD

SIZE IN INCHES	LBS./LIN. FT.
1/8	0.01
3/16	0.02
1/4	0.04
5/16	0.07
3/8	0.10
1/2	0.16
5/8	0.27
3/4	0.38
7/8	0.52
1	0.68
11/4	1.07
1½	1.53
2	2.56

HANDRAIL CONNECTORS

SIZE IN INCHES	LBS./PIECE
11/4 90° fixed	0.87
1½ 90° fixed	1.32
1¼ adjustable	0.87
1½ adjustable	1.32

EMBEDMENT ANGLE

SIZE IN INCHES	LBS./LIN. FT.
1 x 1½ x ¼	0.95
1½ x 1½ x ¼	1.07
2 x 1½ x ¼	1.15

DECK BOARD

SIZE IN INCHES	LBS./LIN. FT.
12 x 2½	2.97
24 x 11/8	4.61
24 x 1½	5.96

SQUARE BAR

•	
SIZE IN INCHES	LBS./LIN. FT.
1 x 1	0.81
11/4 x 11/4	1.13
1½1 x 1½	1.87
2 x 2	3.32

LBS./LIN. FT.

1.68

BUILDING PANEL

BUILDING PANEL - 12 /24	
SIZE IN INCHES	LBS./LIN. FT.
12 x 1 ²⁵ / ₃₂ x ³ / ₃₂	2.67
24 x 2½ x ¼	13.31

THREADED ROD

SIZE IN INCHES	LBS./LIN. FT.
3/8-16 UNC	0.09
½-13 UNC	0.15
5%-11 UNC	0.24
3/4-10 UNC	0.34
½ UNC	0.52

TOE PLATE

SIZE IN INCHES	LBS./LIN. FT
4 x ½ x ½	0.49

THRESHOLD

SIZE IN INCHES

5 ¾ x 2 ½ x ¾₁₆

SIZE IN INCHES	LBS./LIN. FT.
5½ x ¼	1.07

CORNER COLUMN

SIZE IN INCHES	LBS./LIN. FT.
7 ³ / ₄ x 7 ³ / ₄ x ³ / ₈	8.81

HEX NUTS

SIZE IN INCHES	LBS./LIN. FT.
3/8-16 UNC	0.02
½-13 UNC	0.02
5%-11 UNC	0.04
3/4-10 UNC	0.07
⅓ UNC	0.13

SIZE IN INCHES LBS./LIN. FT. 0.50 1½ x .16

SLUDGE FLIGHTS

SIZE IN INCHES	LBS./LIN FT.
3 x 6 (ANGLE)	1.28
3 x 8 (ANGLE)	1.66
3 x 6 (CHANNEL)	1.37
3 x 8 (CHANNEL)	1.50

CENTER COLUMN

SIZE IN INCHES	LBS./LIN. FT
7¾ x 10¾ x ¾	10.68

BOX BEAM - 16"

SIZE IN INCHES	LBS./LIN. FT.
16 x 4 x 3/8	11.41

Fabricating With FRP

PROForms° and PROPlate° structural shapes are designed to provide superior mechanical properties and corrosion resistance. These products, combined with our PROGrid° and PROGrate° grating, are often used to fabricate structures such as stair/handrail assemblies, ladders, walkways and more. Our manufacturing headquarters includes a state-of-the-art fabrication facility, so we can cut, drill and assemble profiles to your specs or ship them ready to assemble in the field.

Fastening

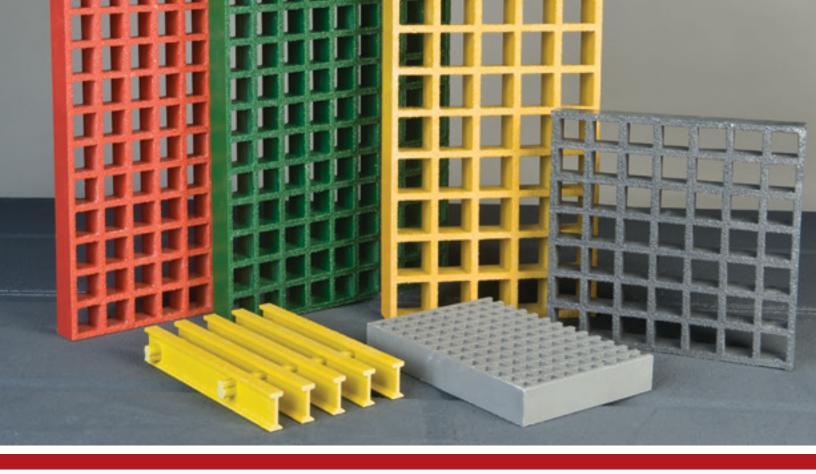
There are many ways to fasten FRP to FRP or FRP to other materials, including riveted, screwed, and bolt-and-nut connections. Bolts and threaded holes are also possible (bonding in place is recommended), as well as lag screws when fastening profiles to wood.

Adhesives

Adhesives can also provide a very strong bond between two FRP shapes or between FRP and other structural materials. For best results, the mating surfaces must be properly prepared, and the recommended type of adhesive must be used. Adhesive should also be applied in a controlled environment, as air temperature and humidity can adversely affect the cure.

FRP Preparation

Almost all fabrication methods currently used for wood, aluminum and steel are available for the fabrication of our FRP building materials. PROForm® and PROPlate® products can be sawed, drilled, routed, punched and turned using standard metalworking equipment. Shearing is only recommended on material 3/16" or thinner. Diamond-coated or carbide saw blades and bits are recommended, as well as properly sharpened tools for faster speeds and less wear on tools.


Cutting Tips

When performing any cutting operation, use light, evenly applied pressure. Excessive pressure tends to clog the blade with dust particles, and this will shorten the life of the blade. Cutting speed is very important. Cutting too fast will fray the edge of the material and may cause it to turn black.

WE ALSO OFFER FRP GRATING

PROGrid® molded FRP grating and PROGrate® pultruded FRP grating are also available in a wide range of sizes to fit your application. These products are ideal for stairways, platforms, walkways and many other applications and are the perfect complement to our PROForms® structural product line.

PRODUCTS AVAILABLE

- PROGrid® molded grating
- PROGrate[®] pultruded grating
- Heavy duty pultruded grating
- High load capacity molded grating
- ADA, VGBA and food grade grating

- Phenolic grating
- Stair treads and stair tread covers
- Fasteners
- Grating pedestals

D.E.F.I. STRUCTURAL FIBERGLASS | 17111 ROLLING CREEK DRIVE, SUITE 105, HOUSTON, TX 77090 PHONE: 800-949-3665 / 281-440-3665 | WEB: WWW.DEFIFIBERGLASS.COM